
GitHub Copilot
Sina Mostafanejad

ACT-CMS Faculty Fellows Bootcamp
June 2024

1

A Practical Guide to

What is GH Copilot?

``… an AI coding assistant that helps you write code faster and with less effort''

2

Main Features

• Code completion

• Chat

• Pull Request summaries

• Knowledge bases (Copilot Enterprise)

3

Interfaces

• IDE/text editor

• Command line interface (GH CLI)

• Chat interface through GitHub Mobile

• GitHub.com interface (Enterprise subscription)

4

Interfaces

• IDE/text editor

• Command line interface (GH CLI)

• Chat interface through GitHub Mobile

• GitHub.com interface (Enterprise subscription)

5

Getting Started with Copilot

• The following IDEs/text editors are supported

• Microsoft Visual Studio

• Visual Studio Code

• Vim/Neovim

• JetBrains IDEs

• Microsoft Azure Data Studio

6

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

Getting Started with Copilot

• The following IDEs/text editors are supported

• Microsoft Visual Studio

• Visual Studio Code

• Vim/Neovim

• JetBrains IDEs

• Microsoft Azure Data Studio

7

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

Supported Languages

• Many programming languages are supported including

• Python,

• JavaScript,

• TypeScript,

• Ruby,

• Go,

• C#

• C/C++

• Copilot can also assist in query generation for databases.

Supported Languages

• Many programming languages are supported including

• Python,

• JavaScript,

• TypeScript,

• Ruby,

• Go,

• C#

• C/C++

• Copilot can also assist in query generation for databases

Your First Suggestion

• Start writing code...

• the suggestions start showing up as you write!

• Accept the suggestions by pressing the tab button

• Partially accept the suggestion by using ctrl + -->

• Hover the mouse over the suggestions to see alternative options

• Use Alt + [or Alt +] to switch between alternative suggestions

• Use ctrl + Enter to see a potential list of suggestions in a new panel

Code Completion

• You get suggestions from Copilot as you write code, so...

• Exercise:

• Open the 00_code_completion.py file and instruct Copilot to write you a
simple [e.g., add()] function

Comments Are Valuable!

• Provide as much information as possible

• Offering examples is helpful, especially working with data or strings

• Top-level comments can give context about the overall intended code

• Useful for boilerplate code to get you started

Comments Are Valuable!

• Exercise:

• Open the 01a_comments.py file and use multiple comments to instruct
Copilot to define an add() function, write unit test(s) for it and run the test(s).

• Open the 01b_top_comment_solution.py file and in a top-level comment ask
Copilot to write a complete calculator class with add, subtract, … member
functions. Provide as much detail as possible.

Be Specific, Please!

• All headers, modules and libraries are best to be included/imported manually.

• Be specific about the versions or libraries when asking Copilot

• Exercise:

• Open the 02_specific_versions.py file and instruct Copilot to write a "Hello
World" print statement in Python 2.7 and 3.0 for you!

Context Matters!

• LLMs make inference based on the context

• If you keep relevant code files open in the IDE, Copilot uses their content to make
better suggestions

• Closed files do not contribute to the context.

Chat Interface

• There is a Chat Interface within IDEs that can be used for chatting with Copilot.

• Simply press the Copilot logo on the bottom right bar in the VSCode and
select GitHub Copilot Chat to start, or

• Press Ctrl + Alt + I to open the side chat panel

• Navigate your conversation using up or down arrow buttons on the keyboard

Context Variables (#)

• Use the #editor context variable in the chat interface to provide additional
context from the currently opened files in the VS/VSCode.

• Use #file to attach a file to your instruction/question to provide targeted context
for better outcome

Context Variables (#)

• Exercise:

• Work on 03_context.py to define a Calculator class which

• Implements an addition member function that wraps around the add()
imported from the 00_code_completion.py module.

• After writing the class, call the addition function, and print the result.

• Hint: Keep the 00_code_completion.py open in your editor to provide
context. You may need to rename the file before importing from it.

Context Variables (#)

• Exercise:

• Using context variables (#), provide additional context for the Calculator class
and ask Copilot in the chat how a subtract function can be added to
the 00_code_completion.py module or the Calculator class

Naming Conventions

• Give your functions and variables meaningful names

• Meaningful names create better codes

• Meaningful names generate better context and therefore, better suggestions
from Copilot

• Exercise:

• Open the 04_naming_convention.py file and define a function with a random

name [e.g., asdfjkh23m()] and see what Copilot suggest for its body.

Examples Help!

• As humans learn the new concepts better with specific examples, AI algorithms
can do too.

• In your instructions and comments, try to provide specific examples (e.g., of the
expected output, return values etc.)

• Exercise:

• Open the 05_examples.py file and instruct Copilot to write a function that
takes two arrays of integers as input and returns the sum of the two arrays.

Inline Chat

• Chat can be done in an inline fashion

• Press ctrl + I to see a pop-up chat bar.

• Useful for quick fixes with code diffs and documentation

• Highlighting the relevant code narrows down context and helps with
the suggestions

• Look for Magic Sparkles to get help from Copilot Inline chat

Inline Chat

• Exercise:

• Open the 05_examples_solution.py file and instruct Copilot through inline
chat to write NumPy/Google style docstring for your function(s)

Slash Commands (/)

• The Slash Commands are designed for common tasks

• /doc ---> Add documentations for objects

• /explain ---> Explain the highlighted code

• /fix ---> Provide a potential fix for the highlighted problematic code

• /generate ---> Generate code as instructed

• /help ---> Get help on Copilot Chat

• /optimize ---> Analyze and enhance efficiency of the highlighted code

• /simplify ---> Simplify the highlighted code

• /tests ---> Write unit test for the highlighted code

• /clear ---> Clear the chat

Copilot Agents (@)

• Agents can help with a large variety of tasks providing context on their own.

• Instead of providing context in our prompts, we can ask Copilot to build the
context on its own.

• Currently there are 3 agents in Copilot:

• @workspace ---> Context from workspace

• @vscode ---> Questions related to VSCode and its structures

• @terminal ---> Chat pertinent to the terminal commands

Copilot Agents (@)

• @workspace builds the context from our workspace and can be used for:

• Looking for files, searching for modules, class or function definitions etc.

• Adding new functionalities

• Fixing the code issues and errors

• Suggestions for refactoring/restructuring the code

• Exercise:
• Close all files in the editor and open the Copilot chat interface. Use the @workspace agent and

ask where is the add() function defined?

References

• https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-
code-suggestions-in-your-editor

• https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-
and-best-practices/

• https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-
github-copilot/

• https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-
understanding-your-code/

• https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-
copilot-3ibp

• https://medium.com/@yar.dobroskok/github-copilot-workspace-new-
development-experience-d69857fbd067

https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-code-suggestions-in-your-editor
https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-code-suggestions-in-your-editor
https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-and-best-practices/
https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-and-best-practices/
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-understanding-your-code/
https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-understanding-your-code/
https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-copilot-3ibp
https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-copilot-3ibp
https://medium.com/@yar.dobroskok/github-copilot-workspace-new-development-experience-d69857fbd067
https://medium.com/@yar.dobroskok/github-copilot-workspace-new-development-experience-d69857fbd067

	Slide 1: GitHub Copilot
	Slide 2: What is GH Copilot?
	Slide 3: Main Features
	Slide 4: Interfaces
	Slide 5: Interfaces
	Slide 6: Getting Started with Copilot
	Slide 7: Getting Started with Copilot
	Slide 8: Supported Languages
	Slide 9: Supported Languages
	Slide 10: Your First Suggestion
	Slide 11: Code Completion
	Slide 12: Comments Are Valuable!
	Slide 13: Comments Are Valuable!
	Slide 14: Be Specific, Please!
	Slide 15: Context Matters!
	Slide 16: Chat Interface
	Slide 17: Context Variables (#)
	Slide 18: Context Variables (#)
	Slide 19: Context Variables (#)
	Slide 20: Naming Conventions
	Slide 21: Examples Help!
	Slide 22: Inline Chat
	Slide 23: Inline Chat
	Slide 24: Slash Commands (/) 
	Slide 25: Copilot Agents (@)
	Slide 26: Copilot Agents (@)
	Slide 27: References

