A Practical Guide to

GitHub Copilot

Sina Mostafanejad

ACT-CMS Faculty Fellows Bootcamp
June 2024



What is GH Copilot?

... an Al coding assistant that helps you write code faster and with less effort"



Main Features

Code completion

Chat

Pull Request summaries

Knowledge bases (Copilot Enterprise)



Interfaces

IDE/text editor

Command line interface (GH CLI)

Chat interface through GitHub Mobile

GitHub.com interface (Enterprise subscription)



Interfaces

IDE/text editor

Command line interface (GH CLI)

Chat interface through GitHub Mobile

GitHub.com interface (Enterprise subscription)



The following IDEs/text editors are supported

* Microsoft Visual Studio

Visual Studio Code

Vim/Neovim

JetBrains IDEs

Microsoft Azure Data Studio

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot



https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

The following IDEs/text editors are supported

* Microsoft Visual Studio

Visual Studio Code

Vim/Neovim

JetBrains IDEs

Microsoft Azure Data Studio

https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot



https://docs.github.com/en/copilot/using-github-copilot/getting-started-with-github-copilot

Supported Languages

* Many programming languages are supported including

* Python, F

* JavaScript,
* TypeScript,
* Ruby,

* @Go,

e CH

* C/C++

* Copilot can also assist in query generation for databases.



Supported Languages

* Many programming languages are supported including

e Python, F

* JavaScript,
* TypeScript,
* Ruby,

* Go,

e CH

* C/C++

* Copilot can also assist in query generation for databases



Your First Suggestion

Start writing code...

* the suggestions start showing up as you write!

Accept the suggestions by pressing the tab button

Partially accept the suggestion by using ctrl + -->

Hover the mouse over the suggestions to see alternative options

Use Alt + [ or Alt + ] to switch between alternative suggestions

Use ctrl + Enter to see a potential list of suggestions in a new panel



Code Completion

* You get suggestions from Copilot as you write code, so...

* Exercise:

* Open the 00_code_completion.py file and instruct Copilot to write you a
simple [e.g., add()] function



Comments Are Valuable!

Provide as much information as possible

Offering examples is helpful, especially working with data or strings

Top-level comments can give context about the overall intended code

Useful for boilerplate code to get you started



Comments Are Valuable!

* Exercise:

* Open the 01a_comments.py file and use multiple comments to instruct
Copilot to define an add() function, write unit test(s) for it and run the test(s).

* Open the 01b_top_comment_solution.py file and in a top-level comment ask
Copilot to write a complete calculator class with add, subtract, ... member
functions. Provide as much detail as possible.



Be Specific, Please!

* All headers, modules and libraries are best to be included/imported manually.

* Be specific about the versions or libraries when asking Copilot

* Exercise:

* Open the 02_specific_versions.py file and instruct Copilot to write a "Hello
World" print statement in Python 2.7 and 3.0 for you!



Context Matters!

 LLMs make inference based on the context

* If you keep relevant code files open in the IDE, Copilot uses their content to make
better suggestions

e Closed files do not contribute to the context.



Chat Interface

* There is a Chat Interface within IDEs that can be used for chatting with Copilot.

* Simply press the Copilot logo on the bottom right bar in the VSCode and
select GitHub Copilot Chat to start, or

* Press Ctrl + Alt +1 to open the side chat panel

* Navigate your conversation using up or down arrow buttons on the keyboard



Context Variables (#)

* Use the #editor context variable in the chat interface to provide additional
context from the currently opened files in the VS/VSCode.

 Use #file to attach a file to your instruction/question to provide targeted context
for better outcome



Context Variables (#)

* Exercise:

* Work on 03_context.py to define a Calculator class which

* Implements an addition member function that wraps around the add()
imported from the 00_code_completion.py module.

* After writing the class, call the addition function, and print the result.

* Hint: Keep the 00_code_completion.py open in your editor to provide
context. You may need to rename the file before importing from it.



Context Variables (#)

* Exercise:

* Using context variables (#), provide additional context for the Calculator class
and ask Copilot in the chat how a subtract function can be added to
the 00_code_completion.py module or the Calculator class



Naming Conventions

* Give your functions and variables meaningful names

* Meaningful names create better codes

* Meaningful names generate better context and therefore, better suggestions
from Copilot

* Exercise:

* Open the 04 _naming_convention.py file and define a function with a random
name [e.g., asdfjkh23m()] and see what Copilot suggest for its body.



Examples Help!

* As humans learn the new concepts better with specific examples, Al algorithms
can do too.

* |In your instructions and comments, try to provide specific examples (e.g., of the
expected output, return values etc.)

* Exercise:

* Open the 05_examples.py file and instruct Copilot to write a function that
takes two arrays of integers as input and returns the sum of the two arrays.



Inline Chat

* Chat can be done in an inline fashion
* Press ctrl + | to see a pop-up chat bar.
» Useful for quick fixes with code diffs and documentation

* Highlighting the relevant code narrows down context and helps with
the suggestions

* Look for Magic Sparkles to get help from Copilot Inline chat



Inline Chat

* Exercise:

* Open the 05_examples_solution.py file and instruct Copilot through inline
chat to write NumPy/Google style docstring for your function(s)



Slash Commands (/)

* The Slash Commands are designed for common tasks

» /doc ---> Add documentations for objects

 [explain ---> Explain the highlighted code

 /fix ---> Provide a potential fix for the highlighted problematic code

« /generate ---> Generate code as instructed

* /help ---> Get help on Copilot Chat

» /optimize ---> Analyze and enhance efficiency of the highlighted code
 [simplify ---> Simplify the highlighted code

» [tests ---> Write unit test for the highlighted code

* [clear ---> Clear the chat



Copilot Agents (@)

e Agents can help with a large variety of tasks providing context on their own.

* |nstead of providing context in our prompts, we can ask Copilot to build the
context on its own.

* Currently there are 3 agents in Copilot:

 @workspace ---> Context from workspace
e @vscode ---> Questions related to VSCode and its structures
e @terminal ---> Chat pertinent to the terminal commands



Copilot Agents (@)

« @workspace builds the context from our workspace and can be used for:
* Looking for files, searching for modules, class or function definitions etc.
e Adding new functionalities
* Fixing the code issues and errors

» Suggestions for refactoring/restructuring the code

* Exercise:

* Close all files in the editor and open the Copilot chat interface. Use the @workspace agent and
ask where is the add() function defined?



References

* https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-
code-suggestions-in-your-editor

* https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-
and-best-practices/

* https://github.blog/2023-05-17-inside-github-working-with-the-lims-behind-
github-copilot/

* https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-
understanding-your-code/

* https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-
copilot-3ibp

* https://medium.com/@vyar.dobroskok/github-copilot-workspace-new-
development-experience-d69857fbd067



https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-code-suggestions-in-your-editor
https://docs.github.com/en/copilot/using-github-copilot/using-github-copilot-code-suggestions-in-your-editor
https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-and-best-practices/
https://github.blog/2024-03-25-how-to-use-github-copilot-in-your-ide-tips-tricks-and-best-practices/
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://github.blog/2023-05-17-inside-github-working-with-the-llms-behind-github-copilot/
https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-understanding-your-code/
https://github.blog/2023-05-17-how-github-copilot-is-getting-better-at-understanding-your-code/
https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-copilot-3ibp
https://dev.to/github/a-beginners-guide-to-prompt-engineering-with-github-copilot-3ibp
https://medium.com/@yar.dobroskok/github-copilot-workspace-new-development-experience-d69857fbd067
https://medium.com/@yar.dobroskok/github-copilot-workspace-new-development-experience-d69857fbd067

	Slide 1: GitHub Copilot
	Slide 2: What is GH Copilot?
	Slide 3: Main Features
	Slide 4: Interfaces
	Slide 5: Interfaces
	Slide 6: Getting Started with Copilot
	Slide 7: Getting Started with Copilot
	Slide 8: Supported Languages
	Slide 9: Supported Languages
	Slide 10: Your First Suggestion
	Slide 11: Code Completion
	Slide 12: Comments Are Valuable!
	Slide 13: Comments Are Valuable!
	Slide 14: Be Specific, Please!
	Slide 15: Context Matters!
	Slide 16: Chat Interface
	Slide 17: Context Variables (#)
	Slide 18: Context Variables (#)
	Slide 19: Context Variables (#)
	Slide 20: Naming Conventions
	Slide 21: Examples Help!
	Slide 22: Inline Chat
	Slide 23: Inline Chat
	Slide 24: Slash Commands (/) 
	Slide 25: Copilot Agents (@)
	Slide 26: Copilot Agents (@)
	Slide 27: References

